

TABLE 3B: SUMMARY OF OFFSITE WATER CLASSICAL CHEMICAL PARAMETERS

Battlefield Golf Course at Centerville 1001 Centerville Turnpike Chesapeake, VA 23322

Sande Date Calcium (Ca) Chloride Hudide Mittate Phosphorus (P) Podassium (M) Sultate as 504 Alkalinity Total Dispolued Solides (Total Suspended So													
		(<i>u</i> g/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(<i>u</i> g/L)	(<i>u</i> g/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
FS-6	07/23/08	19,000	89	MDL	0.025	MDL	2,280	55,300	56	MDL	270	1.7	
MW-4	07/23/08	32,800	20	1.5	MDL	MDL	2,130	21,200	460	MDL	790	14	
MW-5D	07/23/08	13,300	15	0.17	0.11	0.51	6,050	50,300	71	22	260	650	
SW-10	07/23/08	20,200	22	0.21	.10	MDL	2,350	14,600	93	MDL	190	7.6	

Notes:

FS-6 sample collected at Fire (Fentress) Service Facility #6 located along Whittamore Road.

MW-4 and MW-5D are monitor wells located at Emerald Lakes Park along Etheridge Manor Boulevard.

SW-10 is an offsite upgradient surface water body located west of the railroad tracks and along the eastbound lane of Etheridge Manor Boulev MDL Denotes the analyte is at or below the Method Detection Limit.

MW-4 is screened from 5' to 25' below ground surface. The total well depth is 25' below ground surface.

MW-5D is screened from 55' to 65' below ground surface. The total well depth is 65' below ground surface.

EPA 6000 / 7000 Series Method used to analyze for Calcium, Potassium, and Sodium.

SM 4500-CI/E used to analyze for Chloride.

EPA Method 310.2 used to analyze for Alkalinity.

EPA Method 300.0 used to analyze for Fluoride and Sulfate as SO₄.

EPA Method 353.2 used to analyze for Nitrate/Nitrite as NOX.

EPA Method 365.4 used to analyze for Phosphorous.

EPA Method 160.1 used to analyze for Total Dissolved Solids (TDS).

EPA Method 160.2 used to analyze for Total Suspended Solids (TSS).

The reported value is between the Laboratory Method Detection Limit (MDL) and the laboratory Method Reporting Limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.